Peak Scientific Hydrogen Generator Manufacturers

Générateurs d’hydrogène et d’hydrogène sur place

L’hydrogène est l’élément le plus abondant dans l’univers et il est essentiel à toute vie telle que nous la connaissons. On estime qu’il constitue jusqu’à 75 % de la masse de matière dans l’univers, y compris 70 % des gaz constitutifs de Jupiter en plus d’être le principal combustible de fusion nucléaire qui permet à notre Soleil de produire d’énormes quantités d’énergie. Sur terre, il est le troisième élément le plus disponible dans l’atmosphère. Combiné avec l’oxygène, il crée de l’eau (ou H2O), un besoin fondamental à toute vie sur cette planète et, combiné avec du carbone, il nous donne une vaste gamme de composés organiques, utilisés dans la production de nombreuses nécessités modernes, des carburants aux plastiques, caoutchoucs, etc.

Officiellement, l’hydrogène a été découvert en 1766 par Henry Cavendish, mais avait été créé par inadvertance par de nombreux scientifiques près de 100 ans auparavant. Depuis cette date, l’hydrogène gazeux a été utilisé pour de nombreuses applications. Dans la fabrication et le traitement industriels, l’hydrogène gazeux est utilisé dans les piles à combustible pour les voitures, pour le traitement des combustibles fossiles, dans la production d’ammoniac, comme gaz de protection dans le soudage à l’arc, comme un liquide de refroidissement du rotor dans les générateurs électriques, et même comme carburant pour les fusées.

Analyse de laboratoire et recherche

Une autre utilisation, moins connue, de l’hydrogène, est comme gaz porteur dans la chromatographie en phase gazeuse (GC), une approche qui a récemment regagné en popularité en remplacement de l’hélium, qui historiquement a été le gaz de référence de transport GC. Depuis que la technologie des générateurs d’hydrogène gazeux  s’est largement répandue, couplée à la rareté croissante et à l’augmentation des coûts de l’hélium, la production d’hydrogène gazeux est progressivement devenue une option beaucoup plus viable. De plus, les générateurs peuvent fournir des quantités régulières et sûres de gaz H2 aux appareils de GC et sa vitesse optimale plus élevée que l’hélium permet un temps d’analyse plus rapide pour de nombreuses méthodes. L’hélium, contrairement à l’hydrogène, est une ressource limitée qui doit être extraite. Cela signifie que son prix est dicté par l’offre et la demande, ce qui crée une incertitude quant à sa disponibilité et à la stabilité de son prix.

Technologie et justification

La technologie derrière les générateurs d’hydrogène a évolué avec le temps. Les premiers modèles n’étaient pas particulièrement sophistiqués et exigeaient souvent des utilisateurs qu’ils ajoutent des solutions caustiques au générateur d’hydrogène afin de produire de l’hydrogène gazeux, ce qui n’était ni sûr, ni pratique. Cependant, après plusieurs décennies de développement, la technologie a changé de manière significative. Aujourd’hui, l’hydrogène de laboratoire est généralement produite par l’électrolyse de l’eau déionisée en utilisant une pile à membrane échangeuse de proton (PEM), ce qui a pour effet une nécessité réduite pour les utilisateurs de manipuler des substances dangereuses afin de faire fonctionner le générateur.

L’une des principales préoccupations des laboratoires a porté sur la revalidation des méthodes d’utilisation de l’hydrogène pour leurs analyses actuelles, dont beaucoup ont été écrites avec seulement de l’hélium comme gaz porteur. Certaines méthodes étant imposées par les instances dirigeantes comme une exigence pour répondre aux procédures normales d’exploitation. Cela signifie que tout changement de gaz porteur devrait d’abord être validé, ce qui peut être un processus long et coûteux. Cependant, il s’agit d’un environnement en évolution car au fil des ans, sont mises à jour de plus en plus de méthodes incluant l’option de l’hydrogène comme gaz porteur et il y existe beaucoup plus d’informations disponibles sur la façon d’entreprendre la conversion de la méthode.

De plus, bien que le temps perdu dans la revalidation des méthodes puisse entraîner une réticence à modifier le gaz porteur GC de l’hélium, la courbe de Van Deemter (figure 1) démontre clairement la capacité de l’hydrogène à réduire considérablement le temps d’analyse. Par conséquent, passer par l’ensemble du processus de validation est justifié par les augmentations significatives de l’efficacité du flux de travail que l’utilisation de l’hydrogène peut finalement fournir à long terme.

GC Image Decane

Figure 1: la courbe de Van Deemter

 

Une autre préoccupation souvent citée par les laboratoires concerne la sécurité de la production d’hydrogène sur place, en raison des attributs explosifs de l’hydrogène gazeux. Ces préoccupations sont atténuées par les générateurs d’hydrogène de laboratoire, car la quantité de gaz produite est si faible qu’il faudrait des semaines pour que le rapport hydrogène/air atteigne un niveau explosif dans un laboratoire standard, et ce même sans aucune ventilation, dans le cas d’une fuite. En outre, les générateurs d’hydrogène Peak sont livrés avec des caractéristiques de sécurité standard améliorées et intégrées, incorporant des systèmes avancés d’avertissement et d’auto-diagnostic. Ce qui signifie que dans le cas d’une fuite, le générateur arrêterait la production et avertirait l’utilisateur de l’existence d’un problème nécessitant une résolution.

L’utilisation de générateurs d’hydrogène en laboratoire augmente à mesure que de plus en plus de laboratoires abandonnent les incertitudes associées à l’hélium pour passer à un générateur d’hydrogène sur place, pratique et prévisible.

Precision Hydrogen Trace 1200 Hydrogen Generator

En savoir plus

Découvrez la gamme de générateurs d’hydrogène gazeux de Peak Scientific pour GC

Cliquez ici

En savoir plus sur le passage à l’hydrogène comme gaz porteur